Как произвести расчет свайного фундамента при помощи онлайн-калькулятора + вычисление количества свай и несущей способности

Поможем с расчётами и работами по свайному фундаменту

Мы опытная компания по погружению железобетонных свай и шпунтов, с большим парком техники и большим количеством сданных объектов. Поможем Вам с возведением свайного фундамента любой сложности, примеры наших работ на фото. Видео наших работ. Ждём Вашего обращения по заявке:

Цены на услуги

Подробнее

Смета на забивку свай — техкарта на забивку свай

Существуют 2 типа сметы — коммерческая смета смета Данная смета составляется с учетом спроса и предложений, загруженности оборудования и специфики конъюнктуры. Наша…

Подробнее

Расчёт нагрузки на фундамент

Неприятно наблюдать, как в недавно построенном доме появляются на стенах трещины. Самое печальное в этой ситуации, что исправить практически ничего изменить нельзя,…

Подробнее

Расчёт нагрузки на фундамент

Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.

Плюсы и минусы свайно-ростверкового фундамента

Конструкция свайно-ростверкового фундамента представлена свайными опорами, объединёнными вверху плитами или балками…

Осадка свайного фундамента

Факторы, которые влияют на осадку фундамента, – это конструкция самой постройки и состав самой почвы. Хотя свайные основания отличаются повышенной стабильностью в любых грунтах, при повышенном содержании глины в них они становятся более пластичными и подвижными. Поэтому в этом случае необходимо тщательно рассчитывать длину свай.

На осадку фундамента влияет масса и размеры несущих стен и внутренних перегородок, наличие арок и т. д. Поэтому она может быть неравномерной с различных сторон строения, но тщательный подбор винтовых свай в соответствии с необходимой в каждом случае несущей способностью позволит избежать проседания конструкции.

При определении осадки считается, что нагрузка равномерно распределена по всему периметру основания, который считают монолитным блоком. Верхняя граница такого условного монолита проходит по оголовкам свайных изделий, нижняя – сквозь их наконечники, а боковые – по крайним рядам винтовых свай. Составленный таким образом разрез фундамента позволяет начертить график уплотняющих напряжений, которые способны выдержать слои грунта.

Допустимые осадки свайно-винтового фундамента приводятся в СНиП 2.02.1-83   и они определяются типом постройки:

  • для панельных и блочных бескаркасных домов осадка максимальная осадка не должна превышать 10 см;
  • для сооружений со стальным каркасом допускается максимальная осадка 12 см;
  • для зданий из железобетона значение предельно допустимой осадки равно 8 см и т.д.

Расчет осадки методом послойного суммирования

Чаще всего осадку фундамента рассчитывают методом послойного суммирования. Он предполагает определение осадки отдельных слоев грунта, на которые давит фундамент.

Более подробный алгоритм расчета по методу послойного суммирования выглядит таким образом (рисунок ):

  1. Строят эпюру (график) Pzp, на которую наносят дополнительные напряжения (уплотняющие давления) на фундамент.
  2. Строят график природных давлений Pϫz, предварительно разделив чертеж графика на слои, при этом hi должно быть меньше 0,4b.
  3. Определяют осадку Si отдельных слоев почвы, складывают эти величины и получают окончательную осадку фундамента по формулам:

Si = hi*mvi*Pzi, S = ΣSi.

Величина mvi вычисляется в соответствии с данными компрессионных испытаний, а Pzi – по соответствующей эпюре как среднестатистическое дополнительное давление в i-м слое почвы.

Если мы знаем модуль общей деформации каждого слоя почвы Ei, то осадку можно рассчитать по формуле S = Σhi*β/ Ei*Pzi, где коэффициент β согласно СНиП равен 0,8.

При использовании этого метода предусмотрена линейная зависимость между деформациями и напряжениями. Слои рассматривают непосредственно под центром фундамента, исходя из графика максимальных уплотняющих давлений

При построении зависимости Pzp не учитывается слоистость напластований, боковые расширения почвы, а напряжения принимаются во внимание только по вертикали. Выбираем уровень глубины, ниже которого деформации грунта по нашему предположению отсутствуют, исходя из соотношения Pzp меньше или равно 0,2Pϫz (при Ei больше 5 МПа)

При этой характеристике меньше 5 МПа Pzp меньше или равно 0,1Pϫz.

Пример расчета свайного поля

Чтобы правильно рассчитать количество необходимых свай для строительства двухэтажного дома размером 6х12 из бруса размером 200х200, необходимо провести следующие расчеты:

  1. Если для строительства необходимо 51,9 м3 бруса, масса одного кубометра которого составляет 800 кг, получаем общий вес бруса: 51,9*800 = 41520 кг.
  2. Нагрузка, которая приходится от одного этажа строения на фундамент (при расчетной полезной нагрузке, зависящей от количества проживающих в доме людей, составляет по нормативам 150 кг/м2), составляет: 6*12*150 = 10800 кг. В случае двухэтажного дома эту нагрузку увеличивают вдвое и получают 21600 кг.
  3. Примерная снеговая нагрузка (при значении норматива 180 кг/м2) составит 6*12*180 = 12960 кг.
  4. Складываем все массы: 41520 + 21600 + 12960 = 83 680 кг.
  5. Если предельная допустимая нагрузка на сваю составляет 2500 кг, делим 83680 кг на 2500 кг и получаем необходимое количество свай – 34 штуки.

Расчет нагрузки и осадки свайно-винтового фундамента не требует специализированных инженерных знаний и доступен любому владельцу дома, который хочет сэкономить на услугах специализированных проектировочных фирм.

Способы вычисления несущей способности по различным параметрам

Несущая способность сваи зависит от целого ряда параметров. Главные из них – материал опоры и виды грунта, с которыми она контактирует при заглублении. Опираясь на данные характеристики можно легко рассчитать необходимое количество элементов свайного фундамента и их геометрические параметры.

Свайные фундаменты

Среди получивших наибольшее распространение в частном домостроении можно выделить следующие свайные фундаменты:

  • На винтовых сваях;
  • На забивных опорах;
  • С помощью буронабивных свай.

Каждый вариант хорош в тех или иных случаях и может использоваться при строительстве зданий различной конструкции и этажности.

Расчет фундамента на винтовых сваях

Винтовые сваи представляют собой стальные трубчатые опоры, оснащенные в нижней части лопастями, облегчающими процесс внедрения в грунт. Для строительства домов используют элементы диаметром 133, 108 и 89 мм. Более тонкие сваи можно применять для монтажа легких конструкций типа беседок и террас.

Фундамент на винтовых сваях

Несущая способность сваи с лопастями зависит от следующих параметров опоры:

  1. Диаметра трубы;
  2. Длины трубы, погруженной в почву;
  3. Диаметра лопастей, распределяющих конечную нагрузку на грунт.

Даже трубы самого большого диаметра не позволяют использовать их для строений из таких сравнительно тяжелых строительных материалов, как кирпич и бетонные стеновые блоки. Для соответствия нагрузке дома даже на таких мощных почвах, как глиняные шаг установки винтовых свай может составлять 0,3 метра, что невыгодно с точки зрения технологии и экономики строительства.

Особенности фундамента на забивных сваях

Максимально возможная несущая способность забивной сваи позволяет широко использовать подобный вид фундаментов даже при строительстве многоэтажных жилых домов. Это способствует их распространению при возведении конструкций высотой до 40-60 метров.

Применение специализированной строительной техники позволяет использовать опоры, длина боковой поверхности которой может составлять десятки метров. Забитая свая нижним концом опирается на высокопрочные скальные породы, передавая им нагрузку от конструкции дома. Прочность материала опоры достаточна для сохранения ее целостности под такой высокой нагрузкой.

В частном домостроении фундамент на забивных сваях распространен очень слабо. Связано это с высокой стоимостью аренды пневматического забивного оборудования и его операторов. Только в крайних случаях строительные инженеры склоняются в пользу такого вида фундамента для двухэтажных частных домов.

Буронабивные сваи – оптимальный вариант фундамента

Буронабивные сваи аналогичны забивным, но монтаж тела опор осуществляется непосредственно на месте строительства. Для этого в грунте бурится отверстие, в которое опускается полая цилиндрическая опалубка в виде труб. Внутрь устанавливается стальной усиливающий каркас и полость заполняется бетоном. Для увеличения несущей способности сваи возможно изготовление ее нижнего конца в виде полусферического или конического расширения.

Важный аспект – материал, из которого изготовлена опора и способ ее изготовления. Максимальная величина характерна для железобетонных заводских стоек. Несущая способность сваи по материалу в расчетах характеризуется коэффициентами, величина которых определяется по соответствующим таблицам.

Фундамент на буронабивных сваях

В процессе бурения первого или пробного шурфа на месте строительства необходимо как можно тщательнее изучить имеющиеся слои грунта, ибо каждый из видов почв обладает различной несущей способностью сваи. Конкретные цифры по каждому виду почв легко найти в соответствующем ГОСТе, который называется «Грунты. Классификация». Эти величины учитывают, когда определяется несущая способность сваи по грунту.

Буронабивная свая, как и забивная, благодаря плотной посадке в почву нагрузку от конструкции дома передает не только своим нижним концом, но и по всей боковой поверхности. Это отличает их от свайных опор и служит неоспоримым преимуществом. Для более тщательного изучения технологии расчета несущей способности сваи рассмотрим ее на конкретном примере.

Методика расчета

Расчет количества винтовых свай выполняют с учетом габаритов и веса дома, который будет установлен на фундамент. Как правило, расстояние между сваями может составлять:

  • до 2 м, если будет возводиться строение из газобетонных и пенобетонных блоков или плит;
  • до 3 м, если запланировано строительство деревянного дома из бруса, бревна и т.д.;
  • до 2,5 м – также выбирают для деревянных конструкций. Еще с такими сваями работают в регионах, где наблюдается большая ветровая нагрузка;
  • до 3,5 м – под строительство легковесных заборов и оград.

Строительство дома из бруса

Чтобы правильно определить количество опор для свайно-винтового фундамента, следует провести следующие операции:

  • составить проект будущей основы или первого уровня постройки;
  • расположить винтовые опоры на каждом углу будущего здания;
  • установить сваи там, где будут пересекаться несущие перегородки дома;
  • между расположенными сваями теперь необходимо установить дополнительные сваи по периметру несущих стен с тем условием, чтобы расстояние от одного до другого элемента не превышало того, что было зафиксировано ранее (учитывая вес и вид постройки);
  • оставшееся пространство для фундамента заполняется сваями так, чтобы между соседними опорами расстояние не превышало указанного в расчетах (2 – 3 м);
  • там, где будет установлена печь или каминный очаг, предусмотрите не менее пары винтовых опор, опять-таки, учитывая размер отопительной конструкции, иначе не избежать критической нагрузки на фундамент;
  • на тот случай, если будет обустроена терраса или любая другая пристройка, места фиксации опорных элементов обозначаются по ранее оговоренному принципу, учитывая оптимальное расстояние шага;
  • теперь, когда расстояние между сваями определено, остается подсчитать все винтовые опоры, нанесенные на план-схему.

Дополнительные рекомендации

В процессе расчета количества свай и их распределения по всей площади фундамента существует множество мелких особенностей, каждая из которых так или иначе сказывается на улучшении конечного результата:

  • при установке фундамента из винтовых свай на сложном нестабильном грунте для усиления опорной конструкции используется обвязка с применением металлического уголка или швеллера на уровне цоколя;
  • при отсутствии геодезических данных для расчетов лучше использовать параметры, соответствующие минимальной расчетной нагрузке, то есть создавать максимальный запас прочности;
  • для улучшения качества расчетов, кроме формул и табличных данных, стоит применять программу для проектировки: она пересчитает все параметры и опровергнет или подтвердит ручной расчет;
  • наименее прочные сваи обладают стволами из шовных труб с приваренными лопастями;
  • по нормам цоколь не должен подниматься больше чем на 60 см над землей, при этом запас сваи по длине должен составлять от 20 до 30 см.

При монтаже свай на неровном участке желательно оставлять запас по длине в районе 20–50 см. В дальнейшем излишки можно будет отрезать или произвести выдергивание. А вот при недостатке – придется забивать новую сваю.

О том, как рассчитать количеситво винтовых свай, смотрите в видео ниже.

Определение количества опор фундамента и их конфигурации

Длину внутренних простенков прибавляют к общей величине протяженности фундамента. Впоследствии на базе этой величины будут определены интервалы между осями опор. Вычисления трудоемки, но их можно доверить компьютеру: машина точно рассчитает параметры фундамента.

Онлайн калькулятор позволит:

  • произвести ;
  • определить необходимый объем бетона;
  • задать нагрузку, которую может выдержать одна свая;
  • установить диаметр, глубину залегания и количество опор для фундамента.

Пример: Определение сопротивляемости буронабивной сваи по материалу и по грунту

1)      По материалу (Рмат):

Рмат = Кур*Sосн*Rм; (3)

Кур – индекс однородности грунтов (справочно равен 0,6);

Sосн – площадь основания опоры, м2 (определяется расчетным путем – 3,14 * r2); Площадь основания сваи диаметром полметра равна 0,196 м2;

Rм – величина сопротивления бетона (табличная); Для бетона эта величина равна 400 кг/м2.

Подставляя значения в формулу, получаем: Рмат = 47 тонн.

2)      По грунту (Ргр):

Ргр = Ког*Кур*(Rгосн*Sосн*p + Кду*  Rгбок*h); (4)

где:

Ког – индекс однородности грунта (справочно равен 0,7);

Кур – индекс условий работы (принимается за 1);

p – периметр (для трехметровой сваи с диаметром 0,5 м периметр равен 0,157 м);

Rгосн – сопротивление грунта, приведено в таблице 2; Для глины составляет 90 т/м2;

Sосн – площадь основания опоры, м2 (определена ранее – 0,196 м2);

Rгрп – величина сопротивления грунта под пяткой опоры (табличная); Для твердой глины это – 90 т/м2;

Кду – дополнительный индекс условий – 0,8;

Rгбок – значение несущей способности грунтов сбоку. Определяется как средняя взвешенная для каждой точки поверхности с интервалом в 1 метр. В нашем случае равно 3,85 тонн/м2.

h – толщина первого слоя грунта, прилегающего к фундаменту. Ее расчетное значение составит 2,3м.

Подставляя цифровые величины в формулу (2), получаем сопротивление сваи по грунту – 26,5 тонн. Эта величина – меньше, чем прочность материала. Ее и берут в качестве исходной для определения количества свай.

Пример: Расчет количества опор. Алгоритм вычислений

1)      Определяем весовую нагрузку на 1 м ростверка (Нпм). Для этого полную массу дома относим к общему периметру ростверка.

Нпм = Мд/Пф; (5)

2)      Вычисляем межосевое расстояние между опорами: находим отношение значения несущей способность сваи к нагрузке на погонный метр фундамента.

Осв = Ргр/ Нпм; (6)

В нашем случае опора способна выдержать вес в 26 тонн. Значит, на каждый метр ростверка, при соблюдении минимального интервала размещения свай в 3 метра, может прийтись до 8,33 тонн. На практике удельное давление, оказываемое обычным одноэтажным строением на фундамент, составляет 5,5–7 тонн.

Пример расчета несущей способности свайного отдельно стоящего фундамента

Рассчитать свайный фундамент под колонну про­мышленного здания на действие центральной нагрузки N

= 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлени­ем осевому растяжениюRbt = 1,05 МПа. Глубина заложения подош­вы ростверка по конструктивным соображениям принята равнойh = 0,8 м. Грунтовые условия стро­ительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 ,h1 = 3,6 м,E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 ,h2 = 1,7 м;Е2 =17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 ,h3 = 2,2 м,E3 = 32 МПа);4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 ,h4 =3,4 м,E4 =30 МПа).L/H—5,1.Решение.

Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длинойL = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острияl = 0,25 м. Сваи погружают с помощью забивки дизель-мо­лотом.

Найдем несущую способность одиночной висячей сваи, ориенти­руясь на расчетную схему, показанную на рис. 6.1, а

и имея в ви­ду, что глубина заделки сваи в ростверк должна быть не менее 5 см.

Рис. VI.1

Площадь поперечного сечения сваи A

= 0,3·0,3 = 0,09 м 2 , периметр сваи

По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R =

2,35МПа.

По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-моло­тов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR

=1,0 и по боковой поверхностиγcf =1,0.

Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при сред­них глубинах расположения слоев h1

= l,8 м иh2 = 3,2 м, интерполи­руя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I):f1 = 0,0198 МПа,f2 = 0,0254 МПа.

Для третьего слоя грунта при средней глубине его залегания h3

= 4,45 м по этой же таблице для супеси пластичной с показате­лем текучестиIL = 0,6, интерполируя, находимf3 = 0,0165 МПа.

Для четвертого слоя при средней глубине его расположения h4

= 5,775 м для песка мелкого находимf4 = 0,041б МПа.

Несущую способность одиночной висячей сваи определим по формуле (6.4)

Ф=

1 =0,364 МН.

Расчетная нагрузка, допускаемая на сваю по грунту, составит:

F

= 0,364/1,4 = 0,26 МН.

В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b

= 3·0,3 = 0,9 м. Далее определим требуемое число свай:

Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.

Найдем толщину ростверка из условия (8.8):

По конструктивным требованиям высота ростверка должна быть не менее hp

= 0,05+ 0,25 = 0,3 м, что больше полученной в результа­те расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.

Расстояние от края ростверка до внешней стороны сваи в соот­ветствии с конструктивными требованиями назначим равным

= = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е.lp = 15 см. Расстояние между сваями примем равным:l =3b = 0,9 м.

Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.

Найдем вес ростверка G3

= 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке,Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.

Определим нагрузку, приходящуюся на одну сваю, по формуле:

Найдем вес свай:

G1

= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.

Вес грунта в объеме АБВГ

(см. рис. 6.1):

Вес ростверка был найден ранее: G3

=0,0169 МН.

Давление под подошвой условного фундамента:

По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е

= 0,598 найдем значение удельного сцеплениясп = 0,003 МПа.

По табл. 1.13(Приложение I) по углу внутреннего трения φn

= 34°, который был определен ранее, найдем значение безразмерных коэффициентов: =l,55,Mq =7,22 иМс =9,22.

Определим осредненный удельный вес грун­тов, залегающих выше подошвы условного фундамента:

По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соот­ношении L/H>4

находим значения коэффициентовγс1 = 1,3 иγс2 = 1,1.

По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:

Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср

= 0,276 МПа

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:Учись учиться, не учась! 10546 – | 7960 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Что такое свайный фундамент и из чего он состоит

Основой для этого типа фундамента служат полые стальные сваи, равномерно распределяемые по периметру будущих несущих стен дома. Внешняя поверхность покрывается защитным антикоррозионным слоем на основе цинка или полимерного материала, а внутренняя поверхность защищается бетоном, заливаемой в установленную сваю. Верхняя часть свай для фундамента соединяется посредством сварки с оголовком, который в свою очередь будет поддерживать ростверк – конструкцию, объединяющую отдельные сваи в единую основу. Чаще всего для изготовления ростверка используется бетон, стальные швеллеры и двутавры, реже – деревянный брус.

В отличие от ленточного или монолитного фундамента, также нагруженного по всему периметру здания, для монтажа не потребуется значительный объем земляных работ. Фундамент на сваях рекомендуется использовать в следующих случаях:

  • Грунты, находящиеся под стройплощадкой, характеризуются неустойчивостью, высокой влажностью, усадкой под воздействием сезонных факторов;
  • Застройка проводится на территории со сложным рельефом, на котором крайне сложно или невозможно установить обычные фундаменты;
  • Климатические условия в местности, а также уровень грунтовых вод, согласно действующим правилам СНиП, вынуждают сооружать массивный бетонный фундамент, требующий значительных денежных вложений;
  • При сооружении каркасного здания, как правило, используется именно свайный фундамент.

Расчет несущей способности сваи в конкретных условиях.

Перед началом строительства дома из пеноблоков были проведены исследования грунта на глубине 3 метров. Результаты показали следующее распределение почв:

  • 0-2 метра – суглинистые почвы;
  • 2-3 метра – глинистые почвы.

Расчет несущей способности сваи по грунту зависит от параметров самой опоры. В соответствии со Строительными правилами «Свайные фундаменты» предположим первоначально ее длину 3 метра. Минимальный рекомендуемый диаметр для таких опор составляет 300 мм.

Исходя их геометрии и почвенных условий, можно рассчитать несущую способность сваи по ее торцевой части и боковой поверхности. Для этого высчитаем площадь нижнего конца опоры:

Sторца=3,14D2/4=3,13*0,3*0,3/4=0,07,

где D – диаметр круга. Следующий параметр, необходимый для определения несущей способности свай – периметр опоры:

U бок=2*3,14*R=2*3,14*0,15=0,94.

Исходя из перечисленного, несущая способность буронабивной сваи по грунту будет определяться по следующей формуле:

Pтор=0,7Pнорм*S=0,7*90*0,07=4,41т,

где Pтор – несущая способность по торцу сваи, 0,7 – общепринятый коэффициент по грунту, Pнорм – нормативная несущая способность (табличная величина из соответствующих справочников), S – площадь основания. Аналогично рассчитаем несущую способность буронабивной сваи по ее боковой поверхности:

Pбок=0,8*U*fiн*h,

где Pбок – несущая способность по боковой поверхности сваи, 0,8 – коэффициент по условиям работы сваи в почве, U – периметр боковой поверхности, fiн – сопротивление грунта воль боковой поверхности (также табличная величина, зависящая от вида грунта и глубины его расположения), h – высота того или иного слоя грунта, через который проходит свая. Подставляя известные и рассчитанные величины получим:

Pбок=0,8* (2,8*2 + 4,8*1)*0,942=7,8т.

Исходя из проведенных вычислений, можем выполнить определение несущей способности свай. Для этого достаточно суммировать Рбок и Ртор:

Р=Рбок+Ртор=4,41+7,8=12,21т.

То есть каждая свая с указанными выше параметрами в том грунте, который располагается в зоне строительства согласно нашему примеру, способна выдержать нагрузку в 12 тонн 210 кг. Исходя из этой величины, необходимо рассчитать необходимое и достаточное количество опор буронабивного фундамента. Для этого определим общую массу строения.

Пример расчета несущей способности свай

Вес дома определяется как сумма веса всех входящих в него частей – перекрытий, перегородок, стен, стропильной системы, кровельного материала, переменной нагрузка от снега и ветра, массы отделки снаружи и внутри строения, а также предполагаемой к установке в доме мебели и бытовой техники. Предположим, что посчитав все искомые величины, получили общую массу строения, равную 124 тонны.

Следующий необходимый параметр – длина стен и перегородок, под которыми предполагается установка свай. Данная величина позволит распределить опоры дома равномерно с равным шагом. Предположим, что длина стен составила 29 метров. Тогда нагрузка на 1 п.м. будет определяться по формуле:

Q=124/29=4,3 т.

Шаг установки опор определим как отношение несущей способности сваи на величину Q:

L=P/Q=12,21/4,3=2,8

Используя полученные данные, рассчитаем и количество опор буронабивного свайного фундамента через отношение периметра стен к шагу установки опор:

N=29/2,8=10,3.

Принимаем ближайшее большее количества для получения определенного запаса прочности фундамента.

Таким образом, даже не обладая необходимым инженерным строительным образованием можно самостоятельно рассчитать несущую способность свай фундаментов того или иного вида, а также шаг установки опор и их количество. Необходимо это и для контроля работ, проводимых нанятой строительной бригадой, и для предварительного экономического расчета расходов на строительство основания дома.

Расчет ленточного фундамента и его несущей способности

Стоит начинать с того, какое давление фундамент обязан выдерживать

Во внимание берется грунт, на котором расположится будущее строение и глубину, которую необходимо обеспечить для качественного выполнения работ. Расчет ленточного фундамента онлайн — калькулятор, который можно найти в интернете, поможет вам при помощи таблицы и специальной формулы, подобрать необходимую несущую способность

Также вы сможете провести расчет глубины заложения ленточного монолитного фундамента, калькулятор поможет и в этом. Для того чтобы рассчитать оптимальную несущую способность, нужно ввести основные параметры смеси и почвы, после чего вы получите размеры предполагаемой бетонной конструкции.

Калькулятор расчета ленточного фундамента

Имея всего несколько параметров будущей постройки, вы с легкостью сможете просчитать стоимость всех необходимых позиций.

Расчет ленточного фундамента пример:

Для того чтобы внести основные данные в калькулятор, необходимо рассчитать следующие характеристики:

  • давление от кровли, масса с которой будет давить на основание кровля на 1 м. кв;
  • нагрузка от перекрытий: масса перекрытий, которые будут создавать дополнительную нагрузку на 1 м. кв;
  • давление от стен имеет самую высокую нагрузку на основание, поэтому стоит рассчитывать именно массу на 1 м. куб. Обычно, в среднем, именно 1 м. куб. строительного материала приходится на один метр погонный).

Все эти показания следует рассчитывать, учитывая удельный вес каждого элемента строения. После того как вы определились с давлением, которое будет оказывать на основание строение, то пора перейти к расчету стоимости ленточного фундамента, что поможет вам просчитать общую стоимость всех материалов. Для этого необходимо:

просчитать объемы, которые вам необходимы по каждой позиции (во внимание берутся все материалы);
указать среднюю цену каждой позиции (указать цены, по которым вы сможете приобрести материал);
рассчитать общую сумму (подбить итог, и узнать затраты на постройку отличной «подошвы» для любого строения).

Расчет ширины ленточного фундамента

Как правило, для постройки забора, ширина основания постройки составляет от 15 до 20 см, для небольшой бытовой постройки – до 30 см, для постройки дома или гаража — подложку строения рассчитывают исходя из ширины основного материала, к которому добавляют 15-20 сантиметров. Ленточный фундамент, расчет стоимости которого производится в зависимости от ширины, будет идеальным выбором для любого из представленных вариантов постройки. Стоит отметить, что именно такое основание является одним из самых крепких и выносливых. Благодаря своей форме и грамотному расположению, вся масса распределяется на большой площади, что препятствует проседанию или «скольжению» здания на почве.

Расчет ленточного фундамента для дома по грунту

Как пример, можно взять вычисление основания для дома, которое было произведено при помощи калькулятора и специальных таблиц.

  • шифер, которым будет укрываться дом, имеет плотность 50 кг на 1 м. кв;
  • деревянные балки под перекрытие, имеют плотность в 150 кг на 1 м. кв;
  • стены из шлакоблока, имеют удельную массу 1200 кг на 1 м. куб.

Сложив все показания, мы сможем рассчитать среднюю нагрузку на 1 м основания. 50+150+1200 = 1400 кг на м. кв. или 1,4 кг на каждый см2. Если посмотреть на таблицу, можно увидеть, что для такого давления, нашу конструкцию можно будет расположить практически на любом грунте. Стоит отметить, что под такое давление, нет необходимости создавать специальную «подошву», которую обычно применяют при укладке подобного укрепления.

Окончательный расчет ленточного фундамента и материала

Для дополнительного увеличения прочности, профессионалы советуют использовать ребристую арматуру, которая способна выдержать дополнительные нагрузки. Калькулятор, поможет вам рассчитать необходимое количество всех материалов и их стоимость таким образом, чтобы вы не потратили лишних денег и не купили большее количество позиций для укладки основания.

6.3 Расчет буронабивных свай

6.3.1 Расчеты свайных фундаментов и их элементов выполняются в
соответствии с общими положениями СП
24.13330.2011, МГСН 2.07-01
[], МГСН 5.02-99 [].

6.3.2 При расчете буронабивных свай из
виброштампованного бетона по прочности материала расчетное сопротивление бетона
следует принимать с учетом коэффициента условий работы γcb= 1 и коэффициента условий работы, учитывающего влияние
способа производства работ при наличии в скважине воды и извлекаемых обсадных
труб, γ’cb= 0,9.

6.3.3 Сваю в составе фундамента и одиночную по
несущей способности грунта основания следует рассчитывать исходя из условия

                                                               (1)

где N — расчетная вертикальная
нагрузка, передаваемая на сваю, кН;

Fd — несущая
способность (предельное сопротивление) грунта основания одиночной сваи, кН,
называемая в дальнейшем несущей способностью сваи;

γ, γn,
γk — коэффициенты, принимаемые согласно п.
7.1.11 СП 24.13330.2011.

6.3.4 Несущую способность Fd буронабивной
сваи, работающей на сжимающую нагрузку, следует определять по формулам:

а) при объемном
виброштамповании укладываемой бетонной смеси

Fd = γccRRA
+ UΣγcffihi),                                                (2)

где γс — коэффициент условий работы
сваи, γc = 1;

γcR — коэффициент условий работы грунта под нижним концом сваи (для
песков и супесей γcR = 1,1; для глин и суглинков
γcR = 1; в остальных случаях, согласно п. 7.2.6 СП
24.13330.2011);

R — расчетное сопротивление грунта под нижним концом сваи, кПа,
принимаемое, согласно п. 7.2.7 СП
24.13330.2011;

А — площадь опирания сваи, м2,
принимаемая равной:

— для буронабивных свай без уширения —
площади поперечного сечения ствола сваи в уровне подошвы;

— для буронабивных свай с уширением —
площади поперечного сечения уширения в месте наибольшего его диаметра;

U — периметр поперечного сечения ствола сваи, м;

γcf — коэффициент условий работы грунта на
боковой поверхности сваи (для любого типа грунта γcf = 0,9);

fi — расчетное сопротивление i-го слоя грунта на боковой
поверхности сваи, кПа, принимаемое по таблице приложения ;

hi — толщина i-го слоя грунта,
соприкасающегося с боковой поверхностью сваи, м;

б) при вибровтрамбовывании
щебня в грунт ниже забоя скважины или сваи-оболочки, погружаемой с выемкой
грунта

Fd = γccR1RA + UΣγcffihi),                                               (3)

где γс — коэффициент условий работы сваи, γс = 1;

γcR1 — коэффициент условий работы, учитывающий особенности совместной
работы щебеночного «ядра» в основании сваи и окружающего уплотненного грунта,
принимаемый по таблице ;

R — расчетное сопротивление уплотненного грунта под подошвой
буронабивных свай, сооружаемых с вибровтрамбовыванием жесткого материала в
забой, кПа, принимаемое по таблице
приложения ;

А — площадь опирания сваи, м2,
принимаемая равной:

— для буронабивных свай без уширения —
площади поперечного сечения ствола сваи в уровне подошвы;

— для свай-оболочек, заполняемых бетоном, —
площади поперечного сечения оболочки брутто;

U — периметр поперечного сечения ствола сваи, м;

γcf — коэффициент условий работы грунта на боковой поверхности
сваи, принимаемый:

— при объемном виброштамповании укладываемой
бетонной смеси (для любого типа грунта γсf = 0,9);

— в остальных случаях, согласно п. 7.2.6 СП
24.13330.2011 в зависимости от способа образования скважины и условий
бетонирования;

fi — расчетное сопротивление i-го слоя грунта на боковой поверхности сваи, кПа, принимаемое
по таблице приложения ;

hi — толщина i-го
слоя грунта, соприкасающегося с боковой поверхностью сваи, м.

Таблица 1 — Значения коэффициента γcR1

Значение коэффициента для пылевато-глинистых грунтов
с показателем текучести IL

0,1

0,2

0,3

0,4

0,5

0,6

для песчаных грунтов

гравелистых

крупных

средней крупности

мелких

пылеватых

Пески средней плотности

0,8

1,0

1,1

Супеси, суглинки и глины

0,8

0,9

1,0

1,1

1,2

Примечания

1 Для
промежуточных значений IL значения коэффициента γcR1 определяются интерполяцией.

2 Для гравелистых, крупных
песчаных и пылевато-глинистых грунтов с показателем текучести IL < 0,2 определение
сопротивлений производится по результатам опытных работ. Для предварительной
оценки сопротивления основания под нижним концом сваи по формуле () допускаются принимать γcR1 =
0,5.

6.3.5 При определении несущей способности
буросекущихся и бурокасательных свай, воспринимающих сжимающую нагрузку в составе
конструкций типа «стена в грунте», следует учитывать уменьшение трения грунта
на боковой поверхности сваи, вызванное объединением сечений соседних свай в
ряду.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий